

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Foundation Engineering (19CE0130) Course & Branch: B Tech & CE

Year & Sem: IV-B.Tech & I-Sem Regulation: R19

UNIT- I EARTH PRESSURE THEORIES & RETAINING WALLS

•			
1	Define earth pressure theory and various types of lateral earth pressure with neat sketch.	[L2][CO1]	[12M]
2	Determine the lateral earth pressure at rest per unit length of wall as shown in fig. Also	[L3][CO1]	[12M]
	determine the resultant earth pressure. Take $K_0=1-Sin\phi'$, $\gamma_w=10kN/m^3$.		
	A		
	φ'=30°		
	$\chi = 17 \text{kN/m}^3$		
	6'=30°		
	$\sqrt{s_{\text{sat}}} = 19 \text{kN/m}^3 \text{2m}$		
	/ IC +		
3	What are the assumptions of earth pressure theory and derive an expression for Rankines	[L2][CO1]	[12M]
	Earth pressure in cohesive soils?		
4	Derive expression for Rehbann's method for the determination of active earth pressure	[L3][CO1]	[12M]
	with neat sketch.		
5	Discuss culmann's method for the determination of active earth pressure.	[L3][CO1]	[12M]
6	Determine the active pressure on the retaining wall as shown in fig. Take $\gamma_w=10kN/m^3$.	[L3][CO1]	[12M]
	Α φ'=35° 1		
	$\phi = 35$ $\chi = 17 \text{ kN/m}^3$ 2.5 m		
	B V		
	$\phi' = 38^{\circ}$ 2.5 m		
	c sot		
		FT 015 00 00	
7	Explain various types of retaining walls with neat sketch.	[L2][CO2]	[12M]
8	With the help of neat sketch explain design of gravity retaining walls.	[L2][CO2]	[12M]
9	Explain various requirements of stability analysis of Gravity retaining walls.	[L2][CO2]	[12M]
10	A cantilever retaining wall of 7mts height retains sand. The properties of sand are	[L3][CO2]	[12M]
	e=0.5,φ=30 ⁰ and G=2.7m.Using Rankines theory Determine the active earth pressure at		
	the base when the backfill is (i) dry (ii) saturated (iii)submerged and also the resultant		
	active force in each case.		
		· · · · · · · · · · · · · · · · · · ·	-

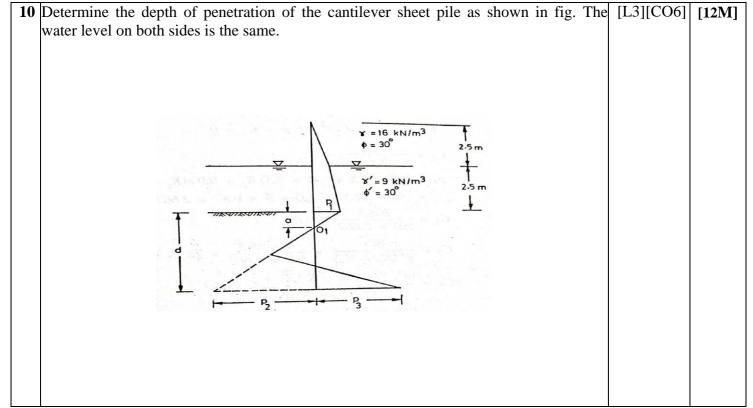
UNIT –II SHALLOW FOUNDATIONS & SETTLEMENTS

1	What are different types of shallow foundations? Explain with the help of neat	[L2][CO3]	[12M]
	Sketches?		
2	(a) With neat sketches explain different types of shear failures.	[L2][CO3]	[6M]
	(b) Determine the ultimate bearing capacity of a strip footing, 1.20 m wide, and		
	having the depth of foundation of 1.0 m. use Terzaghi's theory and assume general		
	shear failure. Take $\varphi = 35^{\circ}$, $\gamma = 18 \text{ kN/m}^3$, and C' = 15 kN/m ² . Take (N _c =57.8,	[L3][CO3]	[6 M]
	$N\gamma = 42.4, Nq = 41.4$		
3	Discuss effect of water table on the bearing capacity of the soil with neat sketch?	[L2][CO3]	[12M]
4	a) List out various parameters for choice of type of foundation.	[L1][CO3]	[6M]
	b) Write various points to consider for fixing depth of foundation.	[L1][CO3]	[6 M]
5	A strip footing of 2m width is founded at a depth of 4m below the ground surface.	[L3][CO3]	[12M]
	Determine the net ultimate bearing capacity, using a) Terzaghi's equation (N _c =5.7,		
	$N\gamma=1.0$, $Nq=0.0$) b) Skempton's equation c) IS Code ($N_c=5.14$). The soil is clay		
	$(\phi=0^0, C-10kN/m^2)$. The unit weight of soil is $20kN/m^2$.		
6	Describe how the plate load test is conducted with a neat sketch?	[L2][CO3]	[12M]
7	What are different types of settlements that occur in a foundation?	[L2][CO3]	[12M]
8	Discuss the various methods of determination of allowable soil pressure in cohesion	[L2][CO3]	[12M]
	less soils?		
9	Discuss the various methods of determination of allowable soil pressure in cohesion	[L2][CO3]	[12M]
	soils?		
10	(a) Determine the ultimate bearing capacity of a square footing, resting on the surface	[L3][CO3]	[6M]
	of saturated clay of unconfined compressive strength of 98kN/m ² .		
	(b)A rectangular footing (3 m X 2 m) exerts a pressure of 100 kN/m ² on a cohesive	[L3][CO3]	[6 M]
	soil (E _s = $5x10^4$ and μ =0.50). Determine the immediate settlement at the centre,		
	assuming a) Footing is flexible b) Footing is rigid.		

UNIT –III PILE FOUNDATIONS

	Define pile foundation? Detail about necessity of pile foundation?		[L1][CO4]	[12M]	
2	List out	various classifications of pile for	undations. Discuss different methods for	[L2][CO4]	[12M]
	installatio	n of piles			
3			apacity of a pile in (a) cohesion less soils	[L2][CO4]	[12M]
		ve soils by using static methods?			
4	How woul	d you estimate the load carrying ca	apacity of a pile by using dynamic	[L2][CO4]	[12M]
	formulae?				
	-	detail In-situ penetration tests for	1 1	[L1][CO4]	[12M]
6		a) A 30cm diameter concrete pile is driven into a homogeneous consolidated clay		[L3][CO4]	[6 M]
			ded length is 10m, estimate the safe load		
	(F.S. =2.				
	b) A square concrete pile (30cm side) 10 m long is driven into coarse sand (γ =18.5			[L2][CO4]	[6 M]
		N=2.0). Determine the allowable lo	· ·		
		d you estimate the group action of		[L2][CO4]	[12M]
		now the pile load test is conducted		[L2][CO4]	[12M]
		ettlement of pile groups in (a) cohes		[L2][CO4]	[12M]
	_	1 '	ven by a single –acting steam hammer.	[L3][CO4]	[12M]
	Estimate the allowable load using (a) Engineering News Record Formula (F.S.=6)				
	` '	Formula (F.S.=4) and (c) Danish Fo	ormula (F.S. =4).		
		llowing data.			
	(i)	Maximum rated Energy	=3500kN-m		
	(ii)	Weight of hammer	=35kN		
	(iii)	Length of pile	= 15m		
	(iv)	Efficiency of hammer	= 0.8		
	(v)	Coefficient of resistitution	= 0.5		
	(vi)	Weight of pile cap	=3kN		
	(vii)	No of blows for last 2.54mm	= 6		
	(viii) Modulus of elasticity of concrete = $2 \times 10^7 \text{ kN/m}^2$				
	(ix) Assume any other data, if required. Take the weight of pile as 73.5kN.				

Course Code: 19CE0130


UNIT –IV WELL FOUNDATIONS & CAISSON FOUNDATION

1	Explain different shapes of wells with neat sketch.	[L1][CO5]	[12M]
2	Discuss various forces acting on well foundation.	[L1][CO5]	[12M]
3	What are the various components of well foundations? What are its uses?	[L1][CO5]	[12M]
4	Explain various steps involved in sinking operation of wells with neat sketch.	[L2][CO5]	[12M]
5	Explain various measures for rectification of Tilts and Shifts with neat sketch.	[L2][CO5]	[12M]
6	Explain the construction of open caisson with the help of neat sketch.	[L2][CO5]	[12M]
7	Describe the various components of pneumatic caisson with the help of neat sketch.	[L2][CO5]	[12M]
8	Explain the construction of Floating caisson with the help of neat sketch.	[L2][CO5]	[12M]
9	What are the advantages and disadvantages of pneumatic caisson over open caisson?	[L1][CO5]	[12M]
10	What are the advantages and disadvantages of Floating caisson and discuss stability of	[L1][CO5]	[12M]
	floating caisson during flotation?		

UNIT -V SHEET PILE WALLS

1	What are different types of sheet pile walls? Explain with neat sketch.		[12M]
2	Explain the pressure distribution and stability of free cantilever sheet pile with neat sketch.		[12M]
3	Explain in detail the pressure distribution of cantilever sheet pile in cohesion less soils with neat sketch.	[L3][CO6]	[12M]
4	Explain in detail the pressure distribution of cantilever sheet pile penetrating clay with neat sketch.	[L3][CO6]	[12M]
5	Explain the stability of anchored sheet piles with free earth support with neat sketch.		[12M]
6	Explain in detail Rowe's moment reduction curves.	[L2][CO6]	[12M]
7	Explain the procedure used in the analysis of the sheet pile with fixed earth support with neat sketch using equivalent beam method.	[L2][CO6]	[12M]
8	What are different anchors used in sheet pile walls? Explain the design of anchor pates and beams with neat sketch.	[L2][CO6]	[12M]
9	Determine the required of penetration of the cantilever sheet pile as shown in fig.Take $\gamma=16\mathrm{kN/m^3}$.	[L3][CO6]	[12M]

Prepared by: Mrs. K.ASHALATHA Asst Professor/CE